Development of new methodology for the synthesis of functionalized α -fluorophosphonates and its practical application to the preparation of phosphopeptide mimetics

Akira Otaka,* Etsuko Mitsuyama, Hideaki Watanabe, Hirokazu Tamamura and Nobutaka Fujii

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. E-mail: aotaka@pharm.kyoto-u.ac.jp

Received (in Cambridge, UK) 20th March 2000, Accepted 10th May 2000

New methodology for the synthesis of functionalized α -fluorophosphonates which utilizes organocopper-mediated reduction has been developed and applied to the preparation of a monofluoromethyl-substituted phosphoserine mimetic-containing peptide.

Naturally occurring phosphate-containing molecules play important roles in various cellular processes, including signal transduction.¹ Therefore, nonhydrolyzable phosphate mimetics have received considerable attention, with α, α -difluorophosphonates serving as potential phosphate mimics,² extensive synthetic and biological studies of which have been made.³ In contrast, evaluation of α -monofluorophosphonates⁴ as biological phosphate mimics has been somewhat limited due to lack of flexibility of practical synthetic methodology⁵ for this kind of molecule. In our efforts to prepare difluoromethyl (CF₂)-substituted phosphothreonine mimetics,⁶ we attempted conjugate addition of a methyl group to 3-(diethylphosphonodifluoromethyl)but-2-enoate 1⁺ using an organocopper reagent to construct the secondary phosphonate unit. Unexpectedly, the reaction predominantly afforded an organocopper-mediated reduction product, α -fluorovinylphosphonate 3, and not the corresponding conjugate addition product 2 (Scheme 1). This is the first example of organocopper-mediated reduction of γ difluoro- α , β -enoates yielding γ -fluoro- β , γ -enoates.

The α -fluorovinylphosphonate⁷ represents a potential synthetic intermediate for the preparation of α -fluorophosphonates. Accordingly, we describe herein the feasibility studies of our newly found reaction and its application to the synthesis of the monofluoromethyl (CHF)-substituted phosphoserine (pSer) mimetic 2-amino-4-fluoro-4-phosphonobutanoic acid (FPab) in a form suitably protected for the preparation of pSer mimetic-containing peptides.

Initially, we chose a difluoromethylphosphonate-bearing conjugate (2*S*)-bornane-[10,2]-sultam (Xs-sultam)-imide⁸ **4** as a substrate for the copper-mediated reaction in order to allow subsequent stereoselective introduction of amino functionality under chiral auxiliary control. The sultam-imide **4** was treated under various conditions⁹ and the results are shown in Table 1.‡

Reaction of 4 with either MeCu(CN)Li or Me₂Cu(CN)Li₂ in the presence of LiCl and/or AlCl₃ at -78 °C proceeded without accompanying alkylation, but rather provided the correspond-

 $Table \ 1 \ {\rm Reduction} \ of \ 4 \ {\rm with} \ {\rm several} \ {\rm organo} \ {\rm copper} \ {\rm reagents}$

(E	$O \xrightarrow{F} O \xrightarrow{F} O \xrightarrow{F} O \xrightarrow{F} O \xrightarrow{H} O O \xrightarrow{H} O O \xrightarrow{H} O O \xrightarrow{H} O$	coxs
	4 X _S = (2 <i>S</i>)-bornane-[10,2]-sultam	5
Run	Reagent	Isolated yield (%) of 5^a
1	Me ₂ CuLi·LiI2LiBr (1.2 eq.)	49
2	Me ₂ CuLi·LiI·2LiBr, TMSCl (1.2 eq.)	67
3	Me ₂ CuLi·Lil2LiBr (2.5 eq.), TMSCl (2.0 eq.)	50
4	MeCu(CN)Li·LiBr (2.0 eq.)	81
5	MeCu(CN)Li·LiBr (5.0 eq.), AlCl ₃ (2.0 eq.)	84
6	$Me_2Cu(CN)Li_2 \cdot 2LiBr (2.5 eq.)$	69
7	Me ₂ Cu(CN)Li ₂ ·2LiBr (2.5 eq.), AlCl ₃ (2.0 eq.)	85
8	$Me_2Cu(CN)Li_2 \cdot 2LiBr (1.1 eq.), BF_3 \cdot Et_2O (1.0 eq.)$	52
9	Me ₂ Cu(CN)Li ₂ ·2LiBr·2LiCl (1.5 eq.)	87
10	Me ₂ Cu(CN)Li ₂ ·2LiBr·2LiCl (2.5 eq.)	92
11	Me ₂ Cu(CN)Li ₂ ·LiBr·2LiCl, BF ₃ ·Et ₂ O (1.5 eq.)	58
12	Me ₂ Cu(CN)Li ₂ ·2LiBr·2LiCl, AlCl ₃ (1.5 eq.)	82
13	MeLi-LiBr	0%
14	Bu ₂ Cu(CN)Li ₂ ·2LiCl (2.5 eq.)	70 ^c

 a Other formed products were not characterized, except for 5 and Michael adduct; b no starting material; c Michael adduct: 24%

ing reduction product **5** with (*E*)-configuration§ in up to 80% isolated yields. Similarly, using methyl copper reagents, the formation of an alkylated product was also not observed. Use of methyl copper reagents was critical for conversion of **4** to **5**, since exposure of **4** to a butyl-copper reagent (run 14) afforded, besides **5**, a Bu-substituted Michael adduct (24%). The reaction presented here, different from other published protocols,^{7,10} is conceptually a new methodology for the preparation of α -vinylphosphonates. Hydrogenation of the resulting α -vinylphosphonates affords the corresponding α -monofluorophosphonates, possessing a carboxy functionality which is amenable to further derivatization. Furthermore, starting from a common difluoromethylphosphonate intermediate, both the monofluoro-and corresponding difluoro-methylphosphoryl counterparts can be obtained.

Next, we applied this methodology to the synthesis of CHFsubstituted pSer mimetic (FPab) as shown in Scheme 2. Hydrogenation of α -vinylphosphonate **5** over Pd–C in AcOEt proceeded without diastereoselectivity to yield α -monofluorophosphonate **6** in quantitative yield. Reaction of 1-chloro-1-nitrosocyclohexane¹¹ in THF (blue) with the Na-enolate, resulting from treatment of **6** with NaHMDS in THF at -78 °C, proceeded with high diastereoselectivity to instantaneously afford a colorless solution of nitrone. Treatment of this solution with aqueous 1 N HCl, followed by extractive work-up, gave crude hydroxylamine **7**, which was taken to the next step without further purification. Reduction of **7** with Zn–AcOH in THF, followed by introduction of Boc protection onto the resulting NH₂ group using (Boc)₂O, gave Boc-protected **8**. The sultam moiety was then converted to the benzyl ester **9** utilizing

Scheme 2 Reagents: (i) H₂/Pd–C, AcOEt; (ii) NaHMDS (1.1 eq.), 1-chloro-1-nitrosocyclohexane (1.1 eq.). THF then 1 N HCl aq.; (iii) Zn (40 eq.). AcOH (50 eq.) then (Boc)₂O (2.0 eq.), CH₃CN; (iv) Ti(CPrⁱ)₄ (2.0 eq.), BzOH (44 eq.), toluene.

Ti(OPrⁱ)₄-benzyl alcohol in toluene at 120 °C. Hydrogenolytic debenzylation (H₂/10% Pd–C in AcOEt) of **9** gave the protected L-CHF-substituted pSer mimetic (Boc-FPab(OEt)₂-OH **10**). Application of a similar sequence of reactions to **4** gave enantiometically pure L-CF₂-substituted pSer mimetic¹² (F₂Pab) **11**. We speculate that FPab derivative **10** possesses the 2*S* configuration (L-amino acid), by analogy to F₂Pab derivative **11**, which is obtained from a difluoromethylphosphonate-containing Xs-sultam utilizing a similar reaction sequence and has the 2*S* configuration. To our knowledge, this is the first synthesis of a CHF-substituted pSer mimetic.

In order to examine the general applicability of protected FPab 10 to peptide synthesis, 10 was incorporated into the peptide sequence (H-Gly-FPab-Val-Pro-Met-Leu) using a standard Boc-based solid-phase protocol. The resulting protected peptide resin was treated with a one-pot, two-step deprotection methodology¹³ consisting of high-acidity [1 mol dm⁻³ TMSOTf-thioanisole in TFA, m-cresol, ethanedithiol (EDT)] and low-acidity (1 mol dm⁻³ TMSOTf-thioanisole in TFA, m-cresol, EDT + DMS-TMSOTf), which was developed for practical deprotection of protected phosphoamino acidcontaining peptide resins, to yield a crude deprotected peptide without accompanying partially Et-deprotected peptides.¶ After HPLC purification, an FPab-containing peptide was obtained in 63% yield. In order to confirm the 2S configuration of FPab, purified peptide was subjected to enzyme digestion using leucine amino peptidase (LAP). Interestingly, it was found that the parent peptides were converted to 5-residue peptides, H-FPab-Val-Pro-Met-Leu-OH, with rates that varied between the diastereomers derived from the fluorine substitution in FPab and with only 10% of FPab being released from the resulting 5-residue peptide after 24 h of LAP treatment. On the other hand, D-FPab-containing peptides remained intact after 24 h digestion using LAP. The present methodology should allow the facile preparation of functionalized α -fluorovinylphosphonates and α -fluorophosphonates. Furthermore, it is tempting to speculate that FPab-containing peptides could serve as inhibitors against both proteases and phosphatases since peptides having FPab residues at the N-terminal position are resistant to the action of LAP.

We thank Dr Terrence R. Burke Jr., NCI, NIH, Bethesda, MD 20892, for proofing the manuscript. This work was supported in part by The Japan Health Sciences Foundation and Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Notes and references

† (*Z*)-3-(diethyldifluoromethyl)but-2-enoate **1** was prepared by coupling of ethyl (*Z*)-3-iodobut-2-enoate with BrZnCF₂(O)(OEt)₂ in the presence of CuBr in DMF.¹⁴ The (*E*)-isomer was synthesized according to the literature method.¹⁵ Sultam-imide **4** was synthesized *via* the following sequence of reactions: (i) transesterification of ethyl (*Z*)-3-iodobut-2-enoate to the corresponding *p*-methoxybenzyl (PMB) ester using Ti(OPr¹)₄ in PMB-OH; (ii) CuBr-mediated coupling, as mentioned above; (iii) removal of the PMB group with 95% aqueous TFA; (iv) coupling of the sultam.

[‡] To a solution of CuCN·2LiCl in THF (1 mol dm⁻³, 4.2 cm³) was added MeLi-LiBr in Et₂O (1.5 mol dm⁻³, 5.6 cm³) at -78 °C. The mixture was allowed to warm to 0 °C and stirred at this temperature for 1–2 min. After re-cooling to -78 °C, **4** (763 mg, 1.68 mmol) in THF (5 cm³) was added with a syringe. After being stirred at -78 °C for 1.5 h, the reaction was quenched by addition of sat. NH₄Cl–28% NH₄OH solution. Usual work-up followed by flash chromatography gave **5** (639 mg, 87% yield).

§ Coupling constants of **5** (${}^{3}J_{HF} = 38.6$, ${}^{3}J_{HP} = 7.3$ Hz) are consistent with those of α-fluorovinylphosphonate possessing (*E*)-configuration (${}^{3}J_{HPtrans} = 39-40$, ${}^{3}J_{HPcis} = 7.6-10$ Hz).¹⁶

¶ Protected peptide resin (Boc–Gly–FPab(OEt)₂–Val–Pro–Met–Leu–PAM resin, 0.05 mmol) was treated with 1 mol dm⁻³ TMSOTf–thioanisole (molar ratio 1:1) in TFA (2.5 cm³) in the presence of *m*-cresol (125 mm³) and EDT (125 mm³) at 4 °C. After being stirred at 4 °C for 60 min, DMS (0.75 cm³) and TMSOTf (0.5 cm³) were successively added to the reaction with additional stirring at room temperature for 2 h. The reaction was quenched by addition of EtOH–H₂O. The aqueous layer was subjected to HPLC purification, yielding 22 mg of the desired peptide. Ion-spray MS *m*/*z* calcd for C₂₇H₄₉N₆O₁₀SFP (MH⁺) 699.76; found 699.50. Purified peptides, incompletely resolved on HPLC.

|| Peptides possessing L-phosphotyrosine mimetics as an FPab replacement were completely hydrolyzed by leucine amino peptidase, while Dphosphotyrosine mimetic-containing peptides remained intact.¹⁷

- 1 T. Hunter, Cell, 2000, 100, 113.
- 2 G. M. Blackburn, Chem. Ind., (London), 1981, 134.
- 3 For a recent review see: M. J. Tozer and T. F. Herpin, *Tetrahedron*, 1996, **52**, 8619; for an updated compilation of references see: J. M. Percy, *Top. Curr. Chem.*, 1997, **193**, 131.
- 4 L. Schmitt, N. Cavusoglu, B. Spiess and G. Schlewer, *Tetrahedron Lett.*, 1998, **39**, 4009; T. R. Burke Jr., M. S. Smyth, A. Otaka, M. Nomizu, P. P. Roller, G. Wolf, R. Case and S. E. Shoelson, *Biochemistry*, 1994, **33**, 6490.
- 5 B. Iorga, F. Eymery and P. Savignac, *Tetrahedron*, 1999, **55**, 2671; X. Zhang, W. Qiu and D. J. Burton, *Tetrahedron Lett.*, 1999, **40**, 2681.
- 6 A. Otaka, E. Mitsuyama, T. Kinoshita, H. Tamamura and N. Fujii, J. Org. Chem., 2000, 65, in press.
- 7 G. M. Blackburn and M. J. Parratt, J. Chem. Soc., Perkin Trans 1, 1986, 1417.
- 8 W. Oppolzer, Pure Appl. Chem., 1990, 62, 1241.
- 9 Organocopper Reagents, A Practical Approach, ed. R. J. K. Taylor, Oxford University Press, Oxford, 1994, pp. 85–28, 143–158, and references cited therein.
- 10 A. J. Zapata, Y. Gu and G. B. Hammond, J. Org. Chem., 2000, 65, 227; R. S. Gross, S. Mehdi and J. R. McCarthy, *Tetrahedron Lett.*, 1993, 34, 7197.
- 11 W. Oppolzer, O. Tamura and J. Deerberg, *Helv. Chim. Acta*, 1992, 75, 1965.
- 12 A. Otaka, K. Miyoshi, T. R. Burke Jr., P. P. Roller, H. Kubota, H. Tamamura and N. Fujii, *Tetrahedron Lett.*, 1995, **36**, 927; D. B. Berkowitz, Q. Shen and J.-H. Maeng, *Tetrahedron Lett.*, 1994, **35**, 6445.
- 13 A. Otaka, K. Miyoshi, M. Kaneko, H. Tamamura, N. Fujii, M. Nomizu, T. R. Burke Jr. and P. P. Roller, J. Org. Chem., 1995, 60, 3967.
- 14 T. Yokomatsu, K. Suemune, T. Murano and S. Shibuya, J. Org. Chem., 1996, 61, 7207.
- 15 K. Blades, A. H. Butt, G. S. Cockerill, H. J. Easterfield, T. P. Lequeux and J. M. Percy, J. Chem. Soc., Perkin Trans 1, 1999, 3609.
- 16 R. Waschbüsch, J. Carran and P. Savignac, *Tetrahedron*, 1996, 52, 14199.
- 17 T. R. Burke Jr., M. S. Smyth, M. Nomizu, A. Otaka and P. P. Roller, J. Org. Chem., 1993, 58, 1336.